U.S. DOE Sponsored Study on SOFC Applications in the Transportation Industry

presented by
Michael Krumpelt
Argonne National Laboratory

John H. Hirschenhofer Parsons

2nd Solid State Energy Conversion Alliance Workshop March 29-30, 2001 Arlington, VA

Motivation

- * Auxiliary Power Units (APU) are becoming interesting to the Automotive Industry because:
 - Power Requirements in Passenger cars are increasing
 - Anti-idling bans for trucks may be legislated

Perceived Challenges for SOFC in Transportation

- **** Start-up time**
- ** Fuel consumption during start-up
- * Mechanical and thermal ruggedness
- ** Power density of system

Objectives of Study

- * Assess planar SOFC technology status
- * Evaluate planar SOFC in transportation vehicles
- * Estimate fuel savings and emissions avoidance
- **** Identify critical R&D issues**

Approach

- * Define a "Representative" planar SOFC based on discussions with
 - Ceramic Fuel Cells Limited
 - Honeywell
 - McDermott Technology
 - Materials and System Research
 - Sulzer-Hexis
 - Rolls Royce
 - Forschungzentrum-Jülich
- Select a best suited diesel reformer based on technology from
 - Nuvera
 - Hydrogen Burner
 - McDermott
 - Johnson Matthey
 - Argonne National Laboratory

Approach (continued)

* Conceptualize and simulate system

* Identify conventional technology or practice for a representative heavy duty vehicle

* Compare fuel consumption and emissions

Typical Planar SOFC Characteristics

- * 850°C cell average temperature
- * 0.7 volts/cell
- *** 0.85 fuel utilization**
- * 100°C cell oxidant temperature rise
- * 10 cm by 10 cm active area
- * System electric output is 12V DC (voltage regulator)

Typical Fuel Processor Characteristics

- ****** ATR selected processor
- **** Temperature: 1000°C**

Steam/Carbon: 3.1

Oxygen/Carbon: 0.38

- * 1,825 Btu/lb LHV (94 Btu/SCF)
- * Gas content (vol%):
 - 1.4 CH₄

- 9.4 CO₂

- 5.2 CO

- 37.8 H₂O

- 23.4 H₂

- 22.8 N₂

Typical, Conventional Equipment

** Prime Power, Mack EM7-300 Engine

- 300 HP (~224 kW)
- 46.4% (LHV) (engine/rad.)
- 1,530 liters
- ~1,100 kg
- ~\$100/kW
- Other parameters

* Auxiliary Power Unit, Pony Pack

- 0.50 to 0.89 kW electric
- 3.73 kW electric equivalent air conditioning
- 29.8% (LHV)
- 8 cu ft (227 liters)
- 300 lb (136 kg)
- \$5,600 basic, \$1,000 to \$2,000 installation

Pony Pack Auxiliary Power Unit

Comparison

	Efficiency % LHV	CO ₂ Emissions kg/kWh
Fuel Cell	39.6	.68
Pony Pack	29.8	.90
Truck engine at idle	11.0	2.44

Argonne Electrochemical Technology Program

Auxiliary Power Application Conclusions

- *** SOFC versus idling:**
 - ◆ Total US, Class 8 fleet fuel savings is ~420 million gallons of diesel annually
 - ◆ 4.6 million tons CO₂ reduction annually
- **** SOFC versus conventional auxiliary power unit:**
 - ◆ ~48 million gallons of diesel saved annually
 - ◆ 0.63 million tons CO₂ reduction annually
 - ◆ Fuel cell unit twice volume & 16% heavier
- * Planar SOFC is competitive compared to idling & to conventional aux power unit

Needed Technology Improvement

SOFC

- Adapt existing planar SOFCs to transportation environment (robust cells e.g., via thermal expansion compatibility of cell components)
- * Design SOFC stack for quick start
- * Conduct improvement program: reduce volume, reduce weight, improve performance, lower cost
- * Demonstrate endurance & reliability
- ***** Initiate alternatives: 150°C ∆T cell, 700°C cell

Fuel Processor

- * Design for quick start; examine transient issues
- Examine catalyst issues (deactivation from liquid HC)
- * Demonstrate endurance & reliability
- Conduct improvement program: reduce volume, reduce weight, improve performance, lower cost